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1 A Short History of the Neural Tangent Kernel

The typical operating regime in deep learning is to optimize an overparame-
terized network via gradient-based optimization. This has been phenomenally
successful in practice but leads to a number of theoretical challenges. The first
is that neural networks have a highly nonlinear parameterization which leads to
optimization objectives that are nonconvex [1, 2]. The nonconvexity of the op-
timization makes proving theoretical guarantees for gradient optimization a tall
task. Furthermore overparameterized networks are able to interpolate arbitrary
labels [3], and the VC-dimension of typical networks grows at least linearly with
the number of parameters [4, 5]. As a consequence, classical complexity based
measures from statistical learning theory such as Rademacher complexity or
VC-dimension lead to vacuous generalization bounds [6]. Thus understanding
modern deep learning will require innovations beyond the classical theories of
both optimization and generalization.

The aforementioned challenges at first make the prospect of establishing a
theoretical understanding of deep learning seem dismal. However, there was
evidence as far back as the 1990s that overparameterized networks may be
amenable to theoretical analysis. [7, 8] demonstrated that the network outputs
converge to a Gaussian process as the number of hidden units approaches in-
finity. This led to a line of research studying the connection between Gaussian
processes, kernel methods, neural network representations, and deep learning
[9, 10, 11]. In a similar vein [12] exhibited decreasing generalization error while
increasing the network width, suggesting that overparameterized networks may
have a more subtle form of capacity control.

While progress was made towards understanding neural network representa-
tions via the infinite-width limit, an understanding of the optimization dynamics
was still lacking. A breakthrough emerged in 2018 when [13] demonstrated that
the optimization dynamics are governed via a time-dependent kernel coined the
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“Neural Tangent Kernel (NTK)”, which in the infinite-width limit becomes con-
stant throughout training. In this limiting setting the network parameterization
becomes approximately linear [14], and bounding the smallest eigenvalue of the
NTK throughout training is sufficient to prove global convergence of gradient
descent. In fact, almost concurrently with [13] the authors in [15] had used this
technique to prove the first global convergence guarantee for gradient descent
applied to a network trained on general data. The NTK had been studied earlier
by the work [16] which demonstrated that the squared loss satisfies a Polyak-
Lojasiewicz (PL) inequality in any region where the smallest eigenvalue of the
NTK is bounded below. This analysis ties back to a well known technique in
nonconvex optimization that establishing a PL-inequality is sufficient for prov-
ing convergence of gradient descent provided that the gradient is Lipschitz [17].
The innovation in [15] was to prove that the gradient descent trajectory remains
in a region where a PL-inequality holds, as well as an innovative technique of
bounding the number of activation patterns that change for a ReLU network as
a substitute for the Lipschitz property.

2 Global Convergence Guarantees via the NTK

2.1 The Neural Tangent Kernel and PL-inequalities

In this section we will briefly display how the NTK naturally emerges when
studying the dynamics of gradient descent. We will focus on the regression
problem. Let

D = {(x1, y1), . . . , (xn, yn)}

denote our training data where xi ∈ Rd and yi ∈ R. We will let f(x; θ) denote
our neural network taking inputs x ∈ Rd with parameters θ ∈ Rp. The specific
architecture will not matter for the purpose of this section. Let ℓ(z, y) be a loss
function, e.g. ℓ(z, y) = 1

2 (z − y)2, and let

L(θ) =

n∑
i=1

ℓ(f(xi, θ), yi)

denote our empirical risk induced by the training data D. We note that it is
not at all obvious a priori that gradient descent will solve

min
θ

L(θ),

because in general the loss L is nonconvex as a function of θ. Even in the case of a
deep linear network, the parameterization θ 7→ f(•; θ) is nonlinear, making this
problem highly nontrivial even for the simplest networks. Furthermore for the
popular ReLU activation function σ(x) = max{0, x} the gradient ∇θL is non-
Lipschitz, which further complicates the analysis. These difficulties together
make proving convergence guarantees for neural networks highly difficult in
general.
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To make things concrete, we will for now assume ℓ(z, y) = 1
2 (z − y)2 is the

squared loss. Furthermore we will optimize the loss via gradient flow

∂tθt = −∂θL(θt),

which is the continuous-time analog of gradient descent. Speaking loosely, one
can view gradient flow as gradient descent in the limit of vanishing step sizes.
A key insight of [13, 15] was to analyze the gradient descent dynamics in func-
tion space (i.e. the evolution of the neural network predictions) as opposed to
parameter space. In this vein we will let uθ, y ∈ Rn be defined by

uθ = [f(x1; θ), f(x2; θ), . . . , f(xn; θ)]
T ,

y = [y1, y2, . . . , yn]
T .

uθ denotes the neural network predictions on the training set D and y denotes
the desired target values. To denote the predictions at time t, we will write
ut := uθt for short. Furthermore we will let r̂t := ut − y denote the residual
vector, i.e. the difference between the neural network predictions at time t and
the desired labels y. Under this notation, we can write the loss at time t as

L(θ(t)) =
1

2

n∑
i=1

(f(xi; θt)− yi)
2 =

1

2
∥r̂t∥2 .

We will let
(Jt)i,j := ∂θjf(xi; θt)

be the Jacobian of ut, i.e. ∂θut = Jt ∈ Rn×p. We note that by the chain rule

∂θL = [∂θut]
T∂ut

L = JT
t r̂t,

∂tr̂t = ∂θut · ∂tθt = −JtJ
T
t r̂t.

We define
Ht := JtJ

T
t .

The positive-semidefinite matrix Ht is called the NTK Gram matrix. It can be
viewed as the Gram matrix induced by the following kernel

Kt(x, x
′) := ⟨∇θf(x; θt),∇θf(x

′; θt)⟩,

where (Ht)i,j = Kt(xi, xj). The kernel Kt is known as the time-dependent
NTK. By our previous result

∂tr̂t = −JtJ
T
t r̂t = −Htr̂t.

Therefore

∂tL(θ(t)) = ∂t
1

2
∥r̂t∥2 = [∂tr̂t]

T · ∂r̂t
1

2
∥r̂t∥2 = −r̂Tt Htr̂t.
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We now note that

∂tL(θ(t)) = −r̂Tt Htr̂t ≤ −λmin (Ht) ∥r̂t∥2 = −2λmin (Ht)L(t).

Then by Grönwall’s inequality [18]

L(t) ≤ L(0) exp

(
−2

∫ t

0

λmin (Hs) ds

)
.

Now assume that
2λmin (Ht) ≥ c > 0 ∀t > 0.

Then we have that
L(t) ≤ L(0) exp(−ct). (1)

Thus we have just shown that lower bounding λmin (Ht) uniformly in time is
sufficient for establishing convergence of gradient flow to a global minimum
when optimizing the squared loss. The quantity c provides an estimate for the
convergence rate. The bound (1) is analagous to linear convergence in discrete
time.

Let us now consider more general loss functions ℓ(z, y). In general by the
same calculations as before we have that

∂tL = − [∂uL]
T
Ht∂uL.

Suppose
λmin (Ht) ≥ c > 0 ∀t > 0.

Then similar to before
∂tL ≤ −c ∥∂uL∥22 .

Assuming L is bounded below it follows that

lim inf
t>0

∥∂uL∥22 = 0.

Suppose L is strongly convex as a function of u, i.e.

⟨u− u′,∇uL(u)−∇uL(u
′)⟩ ≥ α ∥u− u′∥22 .

Then any global minimum is unique. Assume a global minimum u∗ exists, then

⟨ut − u∗,∇uL(ut)⟩ = ⟨ut − u∗,∇uL(ut)−∇uL(u
∗)⟩ ≥ α ∥ut − u∗∥22 .

Thus by the Cauchy-Schwarz inequality we have

∥∇uL(ut)∥2 ≥ α ∥ut − u∗∥2 .

Thus if
lim inf

t>0
∥∂uL∥22 = 0,
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then lim inft>0 ∥ut − u∗∥2 = 0. For gradient flow we have that

∂tL = −∥∂θL∥22 ≤ 0,

and thus L is nonincreasing. It follows that lim inft>0 ∥ut − u∗∥2 = 0 implies
that

lim
t→∞

L(ut) = L(u∗).

We have just showed that if λmin (Ht) ≥ c > 0 for all t > 0 and u 7→ L(u) is
strongly convex, then gradient flow converges to a global minimum. Another
sufficient condition is that L satisfies the following PL-inequality in function
space

α|L(u)− L(u∗)|β ≤ ∥∇uL(u)∥2 (2)

for some α, β > 0. Let σmin(Jt) denote the smallest singular value of Jt. Then
(2) implies

∥∂θL∥ =
∥∥JT

t ∂uL
∥∥ ≥ σmin(Jt) ∥∂uL∥ ≥ ασmin(Jt)|L(u)− L(u∗)|β .

Thus if σmin(Jt) = λmin (Ht)
1/2 ≥ c1/2 > 0 then we have a separate PL-

inequality in parameter space

∥∂θL∥2 ≥ αc1/2|L(uθ)− L(u∗)|β .

Since
∂tL(t) = −∥∂θL∥22 ,

assuming L is bounded below we have that

lim inf
t>0

∥∂θL∥22 = 0.

Thus by the same reasoning as before we have that limt→∞ |L(ut)−L(u∗)| = 0.
One can reason similarly for gradient descent (as opposed to gradient flow).
Specifically, if ∇θL(θ) is Lipschitz and L satisfies the PL-inequality

µ(L(θ)− L(θ∗)) ≤ ∥∇θL∥22

where θ∗ is a parameter corresponding to a global minimum, then gradient
descent with constant step size converges to a global minimum [17].

2.2 Bounding the Smallest Eigenvalue of the NTK Gram
Matrix

In the previous section we demonstrated that

λmin (Ht) ≥ c > 0 ∀t > 0

is a sufficient condition for proving convergence to a global minimum. We note
that proving such a bound is equivalent to bounding the smallest singular value
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of the network Jacobian Jt. Let us now assume again that we are dealing with
the squared loss ℓ(z, y) = 1

2 (z − y)2. For a particular parameter θ, if we let Jθ
and r̂θ denote the network Jacobian and residual respectively, then recall by the
chain rule

∂θL = JT
θ r̂θ.

Thus if σmin(Jθ) > 0, we have that

∥∂θL∥ ≥ σmin(Jθ) ∥r̂θ∥ = σmin(Jθ)
√

2L(θ).

Consequently, wherever σmin(Jθ) > 0 we have that each critical point of the
loss is a global minimum. However neural networks are known to have spurious
critical points, with saddle points being particularly prevalent [19, 20, 21, 22].
Thus the challenge for proving convergence is to demonstrate that the gradient
descent trajectory remains in a region where the smallest singular value of the
Jacobian, or equivalently the smallest eigenvalue of the NTK Gram matrix, is
bounded below. This was the key difficulty that was overcome in the proof in
[15].

It was shown in [13, 15] that under a suitable parameterization, in the
infinite-width limit the matrix Ht converges to a fixed positive-definite matrix
H∞ uniformly in time. The parameterization introduced in these works has
since been called the “NTK parameterization”, which we introduce below. For
a fully-connected network with D hidden layers, we parameterize the network
as follows. Let θ = vec({W (l), b(l)}D+1

l=1 ) where W (l) ∈ Rnl×nl−1 and b(l) ∈ Rnl .
We can then define the network output f(x; θ) via the following relations:

x(0) = x

x(l) = σ

(
1

√
nl

W (l)x(l−1) + βb(l)
)

l = 1, . . . , D

x(D+1) =
1

√
nD+1

W (D+1)x(D) + βb(D+1)

f(x; θ) = x(D+1).

Under this parameterization we initialize the parameters W
(l)
i,j ∼ N(0, 1) and

b
(l)
i ∼ N(0, 1) independently. This is in contrast with the standard parameteri-
zation:

x(0) = x

x(l) = σ(W (l)x(l−1) + b(l)) l = 1, . . . , D

x(D+1) = W (D+1)x(D) + b(D+1)

f(x; θ) = x(D+1),

where the parameters are initialized W
(l)
i,j ∼ N(0, 1/nl) and b

(l)
i ∼ N(0, β2)

independently. The two parameterizations can realize the same functions and
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are identical in distribution at initialization, however the gradients are different.
For gradient descent, the standard parameterization and NTK parameterization
are equivalent up to a parameter-dependent rescaling of the step-size [14]. We
also note that other parameterizations have been studied, such as the “mean-
field” parameterization [23]. Under the NTK parameterization under fairly
general assumptions

Ht → H∞

in probability uniformly on [0, T ] where H∞ is a fixed positive-semidefinite
matrix [13]. Given weak assumptions on the training data inputs x1, . . . , xn

(e.g. no two inputs are parallel [15] or they are “δ-separable” [24]), we have
that

λmin (H
∞) > 0.

Consequentially, we expect that convergence of gradient flow can be guaranteed
in the infinite-width limit. For the finite-width setting, the analysis is more
complicated. One strategy is to bound the deviations of the NTK Gram matrix
at initialization and throughout training. For example, suppose that

∥H0 −H∞∥op , ∥Ht −H0∥op ≤ λmin(H
∞)

4
.

Then we have

|λmin (Ht)− λmin (H
∞) | ≤ ∥Ht −H∞∥op ≤ ∥H0 −H∞∥op + ∥Ht −H0∥op

≤ λmin(H
∞)

2
,

which implies that λmin(Ht) ≥ λmin(H
∞)

2 . For simplicity, assume all layers have
the same width m. At initialization it was shown in [25] that whenever the
activation function is suitably smooth

∥H0 −H∞∥op = Õ(n/
√
m) (3)

with high probability. Furthermore by the results in [26, 27] it was shown that
for any R > 0 with high probability over the initialization that

∥Ht −H0∥op = Õ(nR3D/
√
m) (4)

for any t such that θt ∈ B(0, R). Thus if we can show that θt remains in B(θ0, R)
for some fixed R > 0, then for m large enough

λmin(Ht) ≳ λmin(H
∞).

Thus we need to show that there is an R > 0 independent of m such that
θt ∈ B(θ0, R) for all t > 0.
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Figure 1: A Seemingly Circular Argument A sketch of the argument for
proving convergence of gradient flow to a global minimum.

2.3 Proving Global Convergence for Gradient Flow

We will sketch the following argument for convergence of gradient flow to a global
minimum, which has appeared in many different variations (e.g. [15, 25, 27]).
The proof revolves around a seemingly circular argument depicted in Figure 1,
which can be resolved via a continuous induction argument. By (3) if m ≳
n2λmin (H

∞)
−2

we can assume

∥H0 −H∞∥ ≤ λmin (H
∞) /4.

Fix some value K > 0 and let

T = sup{t ≥ 0 : λmin (Ht) ≥ λmin (H
∞) /2, ∥Jt∥ ≤ K}.

We will see later that by setting K sufficiently large we can ensure that the
set the supremum is taken over above is nonempty with high probability. If
we can demonstrate that T = ∞, then we have that the smallest eigenvalue
λmin (Ht) is bounded below uniformly in time and thus we will have shown that
gradient flow converges to a global minimum. Thus for the sake of contradiction
assume T < ∞. Recall that by the results in Section 2.1 the bound λmin (Ht) ≥
λmin (H

∞) /2 implies that for t ≤ T

∥r̂t∥22 ≤ exp(−λmin (H
∞) t) ∥r̂0∥22 .

It follows that for t ≤ T ,

∥∂tθt∥2 =
∥∥JT

t r̂t
∥∥
2
≤ K ∥r̂t∥2 ≤ K exp

(
−1

2
λmin (H

∞) t

)
∥r̂0∥2 .

Well then

∥θT − θ0∥2 ≤
∫ T

0

∥∂sθs∥2 ds ≤
∫ T

0

K exp

(
−1

2
λmin (H

∞) s

)
∥r̂0∥2 ds

≤ 2K

λmin (H∞)
∥r̂0∥2 =: R′.
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It is not hard to show that the network outputs are bounded with high probabil-
ity at initialization, thus assuming ∥y∥ = O(

√
n) we have that ∥r̂0∥ = O(

√
n).

It follows then that there exists a quantity Rmax = O
(

K
√
n

λmin(H∞)

)
such that

R′ ≤ Rmax with high probability. Well by Eq. (4) we can say with high proba-
bility for θt ∈ B(θ0, Rmax)

∥Ht −H0∥op = O(nR3D
max/

√
m).

So if m ≳ [nR3D
maxλmin (H

∞)
−1

]2 we can assume

∥HT −H0∥2 ≤ λmin (H
∞) /8.

However then

∥H0 −H∞∥ ≤ λmin (H
∞) /4, ∥H0 −HT ∥ ≤ λmin (H

∞) /8,

so that

∥HT −H∞∥ ≤ 3

8
λmin (H

∞) .

Well then

λmin (HT ) ≥ λmin (H
∞)− ∥HT −H∞∥ ≥ 5

8
λmin (H

∞) >
1

2
λmin (H

∞) . (5)

Recall the definition of T ,

T := sup{t ≥ 0 : λmin (Ht) ≥ λmin (H
∞) /2, ∥Jt∥ ≤ K}.

By continuity and the maximality of T we must have that either λmin (HT ) =
1
2λmin (H

∞) or ∥JT ∥ = K, however by (5) λmin (HT ) > 1
2λmin (H

∞), thus it
follows that ∥Jt∥ = K. However as can be seen in the Appendix (see Lemma 4.3)
for any R ≥ 1 if

√
m ≥ R then with high probability

sup
x

sup
θ∈B(θ0,R)

∥∇θf(x; θ)∥ = O(1).

Well then applying this result for R = Rmax we have that with high probability

∥Jt∥ ≤
√
nmax

i
∥∇θf(xi; θt)∥ = O(

√
n)

for t ≤ T . Thus by setting K = Θ(
√
n) we can ensure that with high proba-

bility ∥Jt∥ < K for all t ≤ T , which contradicts our previous result. Thus by
contradiction we conclude that T = ∞, and consequently we have that

λmin (Ht) ≥
1

2
λmin (H

∞) ∀t.

As we saw before this implies that

L(t) ≤ exp(−λmin (H
∞) t)L(0) ∀t > 0,
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and thus we have convergence to a global minimum. The eigenvalue λmin (H
∞)

serves as an estimate for the convergence rate. Our requirements were that

m ≳ n2λmin (H
∞)

−2
,

and
m ≳ n2(Rmax)

6Dλmin (H
∞)

−2
,

where

Rmax = O

(
K
√
n

λmin (H∞)

)
= O

(
n

λmin (H∞)

)
.

It turns out that for general inputs x1, . . . , xn we have that λmin (H
∞) = Ω(1)

[28]. Thus we conclude that m ≳ nO(D) suffices to prove global convergence of
gradient flow.

3 Spectral Bias

In the previous section we demonstrated that bounding the smallest eigenvalue
of the NTK Gram matrix is sufficient for establishing convergence, and that
the bound for the eigenvalue provides an estimate for the convergence rate
of gradient descent. However, in general this is a pessimistic estimate and
the convergence rate along different components will vary. From the results in
Section 2.1 that we have for the squared loss

∂tr̂t = −Htr̂t.

Recall that for large width networks that Ht ≈ H∞, and thus the gradient
descent dynamics can be approximated by the evolution

∂tr̂t = −H∞r̂t,

which has the explicit solution

exp(−H∞t)r̂0. (6)

Let u1, . . . , un denote the eigenvectors of H∞ with corresponding eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn. Then we can analyze the convergence along the direction
of ui:

⟨ui, exp(−H∞t)r̂0⟩ = exp(−λit)⟨ui, r̂0⟩.

We thus see that the convergence rate along the direction ui is given by the
eigenvalue λi, and consequently the directions corresponding to large eigenvalues
will be learned much more quickly. It has been observed in many works (see
e.g. [29, 30, 31]) that the NTK Gram matrix tends to have a small number of
outlier eigenvalues and a long tail of small eigenvalues. In fact, in [32] it was
proven that there are O(1) eigenvalues on the same order of magnitude as the
largest eigenvalue λ1 independent of the parameter n. Consequently, there are
a small number of directions that are learned much more quickly than others.
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The phenomenon that eigenvectors of the NTK corresponding to large eigen-
values are learned quicker can be described as a type of “spectral bias” [33].
Classically, “spectral bias” was the title given to the phenomenon that neu-
ral networks tend to learn the low Fourier frequencies quicker during training1

[35, 34, 36]. However, in special cases these two notions coincide. Specifically,
if we let m denote the width of the network we can define

K∞(x, x′) := lim
m→∞

⟨∇θf(x; θ),∇θf(x
′; θ)⟩

where the convergence is in probability over the parameter initialization [13].
K∞ is called the analytical Neural Tangent Kernel (NTK), and the matrix H∞

introduced in Section 2.1 is the Gram matrix induced by this kernel and the
training data, i.e.

H∞
i,j := K∞(xi, xj).

Let X denote the input domain and let ρ denote the distribution for the training
data inputs, i.e. xi ∼ ρ. Then the kernel K∞ induces an integral operator
TK∞ : L2

ρ(X) → L2
ρ(X)

TK∞g(x) :=

∫
X

K∞(x, s)g(s)dρ(s).

By Mercer’s theorem [37] we have the decomposition

K∞(x, x′) =

∞∑
i=1

σiϕi(x)ϕi(x
′)

where {ϕi}∞i=1 is an orthonormal basis of L2
ρ(X) and each ϕi is an eigenfunction

of TK∞ with eigenvalue σi ≥ 0. Whenever ρ is the uniform distribution on
the sphere X = Sd−1, the eigenfunctions ϕi can be taken to be the spherical
harmonics, which in d = 2 corresponds to the Fourier basis. In the work [38]
it was demonstrated that in the d = 2 case for shallow ReLU networks the
large eigenvalues of TK∞ correspond to the low Fourier frequencies. We note
that we can consider the eigenvectors ui of H∞ to be empirical estimates of
the eigenfunctions of TK∞ . In this case “spectral bias” in the sense of learning
the low Fourier frequencies faster coincides with “spectral bias” in the sense of
learning the dominant eigenvectors of the NTK Gram matrix faster.

[29] had quantified the extent in which finite-width networks approximate
the idealized infinite-width dynamics that are given by the evolution described
in (6). However, this equation only describes the network on the training set
x1, . . . , xn. Let f

∗ be our target function so that yi = f∗(xi). We are interested
in describing the behavior of the residual rt(x) := f(x; θt) − f∗(x) for an arbi-
trary input x. Informally speaking, in the limit of infinite data the matrix H∞

converges to the integral operator TK∞ and the empirical residual r̂t converges

1This has also been called the “Frequency Principle” [34].
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to the full residual rt. In this idealized setting the evolution described in (6)
becomes

rt = exp(−TK∞t)r0. (7)

Assuming (7) holds we have

⟨rt, ϕi⟩L2
ρ
= ⟨exp(−TK∞t)r0, ϕi⟩L2

ρ
= exp(−σit)⟨r0, ϕi⟩L2

ρ
. (8)

Thus under the evolution described in (7) we have that the eigenfunctions ϕi

are learned at rates corresponding to their eigenvalues σi. In contrast to (6), (7)
and (8) describe the dynamics of the residual over the entire input domain and
not just the training set. Thus in this limiting setting the network exhibits a
stronger form of spectral bias that determines the behavior of the network over
the entire input domain. The works [39] and [40] quantified to what extent the
finite-width network trained on finitely many samples exhibits the behavior of
the idealized limit of infinite width and infinite data described in (7).

4 Limitations and Challenges of NTK Analysis

The paper that introduced the Neural Tangent Kernel [13] has become one
of the most highly cited works in deep learning theory, with the NTK hav-
ing attracted both fanaticism and criticism [41]. While the NTK has greatly
enhanced the understanding of the optimization dynamics of wide networks
[15, 42, 24, 43, 44, 45, 46, 47, 14], this analysis breaks down whenever the depth
of the network scales in tandem with the width [48], which is known to achieve
better performance in practice [49, 50]. Furthermore NTK analysis is only ap-
plicable when training with small learning rates, with more moderate learning
rates leading to distinct behavior [51]. It is also known that in practice the
NTK deviates to adapt to the target function [52, 53, 54], which stands in con-
trast to the infinite-width behavior where the NTK is constant. Establishing
a theoretical framework that can handle more realistic scalings for the depth
and learning rate which also makes allowances for feature learning remains an
active challenge. Nevertheless, infinite-width networks achieve compelling per-
formance and serve well as a first approximation of the average behavior of
finite-width models [55], suggesting that the Neural Tangent Kernel will remain
a fundamental tool in deep learning theory.
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eigenvalue of the neural tangent kernel for deep ReLU networks,” in Pro-
ceedings of the 38th International Conference on Machine Learning, vol. 139
of Proceedings of Machine Learning Research, pp. 8119–8129, PMLR, 2021.

[29] S. Arora, S. Du, W. Hu, Z. Li, and R. Wang, “Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural net-
works,” in Proceedings of the 36th International Conference on Machine
Learning (K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of Proceed-
ings of Machine Learning Research, pp. 322–332, PMLR, 09–15 Jun 2019.

[30] S. Oymak, Z. Fabian, M. Li, and M. Soltanolkotabi, “Generalization guar-
antees for neural networks via harnessing the low-rank structure of the
Jacobian,” CoRR, vol. abs/1906.05392, 2019.

[31] M. Li, M. Soltanolkotabi, and S. Oymak, “Gradient descent with early
stopping is provably robust to label noise for overparameterized neural
networks,” in Proceedings of the Twenty Third International Conference
on Artificial Intelligence and Statistics, vol. 108 of Proceedings of Machine
Learning Research, pp. 4313–4324, PMLR, 2020.

[32] M. Murray, H. Jin, B. Bowman, and G. Montufar, “Characterizing the
spectrum of the NTK via a power series expansion,” in The Eleventh In-
ternational Conference on Learning Representations, 2023.

[33] Y. Cao, Z. Fang, Y. Wu, D.-X. Zhou, and Q. Gu, “Towards understanding
the spectral bias of deep learning,” in Proceedings of the Thirtieth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-21 (Z.-H. Zhou,
ed.), pp. 2205–2211, International Joint Conferences on Artificial Intelli-
gence Organization, 8 2021. Main Track.

15



[34] Z.-Q. J. Xu, Y. Zhang, and Y. Xiao, “Training behavior of deep neural net-
work in frequency domain,” in Neural Information Processing (T. Gedeon,
K. W. Wong, and M. Lee, eds.), (Cham), pp. 264–274, Springer Interna-
tional Publishing, 2019.

[35] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht,
Y. Bengio, and A. Courville, “On the spectral bias of neural networks,”
in Proceedings of the 36th International Conference on Machine Learning
(K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of Proceedings of Ma-
chine Learning Research, pp. 5301–5310, PMLR, 09–15 Jun 2019.

[36] G. Yang, A. Ajay, and P. Agrawal, “Overcoming the spectral bias of neural
value approximation,” in International Conference on Learning Represen-
tations, 2022.

[37] J. Mercer, “Functions of positive and negative type, and their connection
with the theory of integral equations,” Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers of a Mathematical
or Physical Character, vol. 209, pp. 415–446, 1909.

[38] B. Ronen, D. Jacobs, Y. Kasten, and S. Kritchman, “The conver-
gence rate of neural networks for learned functions of different frequen-
cies,” in Advances in Neural Information Processing Systems (H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
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Appendix

This section will cover some technical lemmas. The following lemma bounds
the operator norm of the weight matrices at initialization.

Lemma 4.1. Let f(x; θ) be a neural network of the form specified in Section 2.2
with weight matrices {W (l)}D+1

l=1 where W (l) ∈ Rnl×nl−1 . Furthermore let m =
minl≥1 nl. Assume m ≥ d and maxl

nl

m ≤ A. Then with probability at least
1−C exp(−cm) over the initialization θ0 each weight matrix W0 at initialization
satisfies

1√
m

∥W0∥ ≤ 2
√
A+ 1.

The constant C > 0 depends on the depth but is independent of the width m.

Proof. Fix a weight matrixW ∈ Rnl×nl−1 in the model. Following [56, Corollary
5.35] we have with probability at least 1− 2 exp(−t2/2) over the initialization

∥W0∥op ≤
√
nl +

√
nl−1 + t

and thus

1√
m

∥∥∥W (l)
0

∥∥∥
op

≤
√
nl√
m

+

√
nl−1√
m

+
t√
m

≤ 2
√
A+

t√
m
.

Thus by setting t =
√
m and taking the union bound over all weight matrices

in the model (which depends on the depth) we get the desired result.
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We now state for reference the following lemma which follows from the proof
in [57].

Lemma 4.2. Let R ≥ 1 and let f(x; θ) be a neural network of the form specified
in Section 2.2. Furthermore let m = minl≥1 nl. If θ0 is an initialization such

that each weight matrix W0 satisfies 1√
m

∥∥W (l)
0

∥∥
2
= O(1) then

sup
x∈X

sup
θ∈B(θ0,R)

∥∇θf(x; θ)∥2 = O

(
max

{
1,

R√
m

}O(D)
)
.

In particular if
√
m ≥ R then

sup
x∈X

sup
θ∈B(θ0,R)

∥∇θf(x; θ)∥2 = O (1) .

As a consequence of the previous lemma we get the following high probability
bound on the gradients norm ∥∇θf(x; θ)∥2.

Lemma 4.3. Let R ≥ 1 and let f(x; θ) be a neural network of the form specified
in Section 2.2. Furthermore let m = minl≥1 nl. Assume that m ≥ d, maxl

nl

m =
O(1), and

√
m ≥ R. Then with probability at least 1 − C exp(−cm) over the

initialization θ0 we have that

sup
x∈X

sup
θ∈B(θ0,R)

∥∇θf(x; θ)∥2 = O(1).

The constant C > 0 depends on the depth but is independent of the width m

Proof. This follows immediately from Lemma 4.1 and Lemma 4.2.
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